New Observational Power from Halo Bias

Sarah Shandera
Perimeter Institute May 15, 2011

With Neal Dalal, Dragan Huterer arXiv:1010.3722 (JCAP)

Motivation

Constraints on the local model:

- CMB (WMAP 7 year, Komatsu et al)

$$
-10<f_{N L}<74
$$

- LSS (Slosar et al)

$$
-29<f_{N L}<69
$$

Shandera, 15 May 2011, MCTP

BUT...

LARGE LOCAL NON-GAUSSIANITY COMES FROM MULTIPLE FIELDS

What does $f_{N L}$ measure / constrain? What do multi-field models predict? Are observations sensitive to details?

A generalized local ansatz

\diamond Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=f_{N L} \quad P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

\checkmark Mild scale-dependence:

$$
\text { Byrnes et al: } n_{f_{N L}} \equiv \frac{d \ln \left|f_{N L}\right|}{d \ln k}
$$

A generalized local ansatz

\diamond Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

Mild scale-dependence:

$$
\text { Byrnes et al: } n_{f_{N L}} \equiv \frac{d \ln \left|f_{N L}\right|}{d \ln k}
$$

A generalized local ansatz

\diamond Factorizable, symmetric extension:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

\checkmark Mild scale-dependence:

Byrnes et al: $n_{f_{N L}} \equiv \frac{d \ln \left|f_{N L}\right|}{d \ln k}$
Shandera, 15 May 2011, MCTP

A generalized local ansatz

\diamond Factorizable, symmetric extension:
$B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5$ perm.
Δ Mild scale-dependence:

$$
\xi_{s, m}(k)=\xi_{s, m}\left(k_{p}\right)\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s),(m)}}
$$

Byrnes et al: $n_{f_{N L}} \equiv \frac{d \ln \left|f_{N L}\right|}{d \ln k}$
Shandera, 15 May 2011, MCTP

Why?

\diamond Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)

$$
\begin{gathered}
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right) \\
\xi_{m}=\frac{\mathcal{P}_{\zeta, \sigma}(k)}{\mathcal{P}_{\zeta, \phi}(k)+\mathcal{P}_{\zeta, \sigma}(k)} \\
f_{N L}(k)=\tilde{f}_{N L} \xi_{m}^{2}(k)
\end{gathered}
$$

Shandera, 15 May 2011, MCTP

Why?

Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)

$$
\begin{gathered}
\Phi_{N G}=\phi_{G}+\sigma_{G}+\tilde{f}_{N L}\left(\sigma_{G}^{2}-\left\langle\sigma_{G}^{2}\right\rangle\right) \\
\xi_{m}=\frac{\mathcal{P}_{\zeta, \sigma}(k)}{\mathcal{P}_{\zeta, \phi}(k)+\mathcal{P}_{\zeta, \sigma}(k)} \\
f_{N L}(k)=\tilde{f}_{N L} \xi_{m}^{2}(k)
\end{gathered}
$$

$$
B_{\Phi}^{m}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

Why?

\checkmark Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)

$$
B_{\Phi}^{m}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

Shandera, 15 May 2011, MCTP

Why?

\diamond Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)
\checkmark Single-field function: non-trivial self interactions (Chris Byrnes: non-minimal curvaton; Ivan Agullo, Jonathon Ganc: initial state)

$$
B_{\Phi}^{m}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm }
$$

Shandera, 15 May 2011, MCTP

Why?

\diamond Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)
\checkmark Single-field function: non-trivial self interactions (Chris Byrnes: non-minimal curvaton; Ivan Agullo, Jonathon Ganc: initial state)
$B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5$ perm.

Why?

\diamond Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)
\checkmark Single-field function: non-trivial self interactions (Chris Byrnes: non-minimal curvaton; Ivan Agullo, Jonathon Ganc: initial state)
\checkmark Both at once: multi-field Delta-N
(Misao Sasaki's talk)
$B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5$ perm.

Why?

\diamond Multi-field function: Two or more fields contribute to curvature: (Kendrick Smith's talk)
\checkmark Single-field function: non-trivial self interactions (Chris Byrnes: non-minimal curvaton; Ivan Agullo, Jonathon Ganc: initial state)
\checkmark Both at once: multi-field Delta-N (Misao Sasakis talk)
\checkmark Natural? If observably large local type, yes.
$B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5$ perm.

Note...

\diamond One of these functions is familiar:

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]
$$

$$
f_{N L}^{\mathrm{eff}}(k)=f_{N L}^{\mathrm{eff}, 0}\left(\frac{k}{k_{0}}\right)^{n_{f}}
$$

Shandera, 15 May 2011, MCTP

Note...

\diamond One of these functions is familiar:

$$
\Phi(\mathbf{x})=\Phi_{G}(\mathbf{x})+f_{N L} *\left[\Phi_{G}^{2}(\mathbf{x})-\left\langle\Phi_{G}^{2}(\mathbf{x})\right\rangle\right]
$$

$$
f_{N L}^{\mathrm{eff}}(k)=f_{N L}^{\mathrm{eff}, 0}\left(\frac{k}{k_{0}}\right)^{n_{f}}
$$

$$
f_{N L}(k)=\xi_{s}\left(k_{p}\right)\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s)}}
$$

Shandera, 15 May 2011, MCTP

Local Non-Gaussianity

Correlation between long and short modes: enhanced clustering
\checkmark Effect of local and generalized local NG:

Shandera, 15 May 2011, MCTP

Local Non-Gaussianity

Correlation between long and short modes: enhanced clustering

$$
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k)
$$

\checkmark Effect of local and generalized local NG:

Shandera, 15 May 2011, MCTP

Local Non-Gaussianity

Correlation between long and short modes: enhanced clustering

$$
\begin{gathered}
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k) \\
P_{h m}(k)=\left[b_{G}(M)+\Delta b\left(f_{N L}, k, M\right)\right] P_{m m}(k)
\end{gathered}
$$

\checkmark Effect of local and generalized local NG:

Local Non-Gaussianity

Correlation between long and short modes: enhanced clustering

$$
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k)
$$

$$
P_{h m}(k)=\left[b_{G}(M)+\Delta b\left(f_{N L}, k, M\right)\right] P_{m m}(k)
$$

\checkmark Effect of local and generalized local NG:

$$
\Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}}
$$

(Dalal et al)

Shandera, 15 May 2011, MCTP

Local Non-Gaussianity

Correlation between long and short modes: enhanced clustering

$$
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k)
$$

$$
P_{h m}(k)=\left[b_{G}(M)+\Delta b\left(f_{N L}, k, M\right)\right] P_{m m}(k)
$$

\checkmark Effect of local and generalized local NG:

$$
\Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}}
$$

(Dalal et al)

$$
\frac{f_{N L}^{e f f}(M)}{k^{2-n_{f}^{(m)}}}
$$

(Shandera et al)

Shandera, 15 May 2011, MCTP

NON-GAUSSIAN BIAS FROM ANY BISPECTRUM

$$
k_{l} \equiv k_{3} \ll k_{1} \sim k_{2} \equiv k_{s}
$$

eg:

Shandera, 15 May 2011, MCTP

NON-GAUSSIAN BIAS FROM ANY BISPECTRUM

$$
k_{l} \equiv k_{3} \ll k_{1} \sim k_{2} \equiv k_{s}
$$

$e g: B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{s}\right) \xi_{m}\left(k_{s}\right) \xi_{m}\left(k_{l}\right) P\left(k_{s}\right) P\left(k_{l}\right)$

NON-GAUSSIAN BIAS FROM ANY BISPECTRUM

$$
k_{l} \equiv k_{3} \ll k_{1} \sim k_{2} \equiv k_{s}
$$

eg: $B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{s}\right) \xi_{m}\left(k_{s}\right) \xi_{m}\left(k_{l}\right) P\left(k_{s}\right) P\left(k_{l}\right)$

$$
\Delta b_{N G} \propto \frac{f_{N L}^{e f f}(M)}{k^{2-n_{f}^{(m)}}}
$$

Shandera, 15 May 2011, MCTP

NON-GAUSSIAN BIAS FROM ANY BISPECTRUM

Shandera, 15 May 2011, MCTP

NON-GAUSSIAN BIAS FROM ANY BISPECTRUM

年

$e g: B\left(k_{1}, k_{2}, k_{3}\right) \approx 2 \xi_{s}\left(k_{s}\right) \xi_{m}\left(k_{s}\right) \xi_{m}\left(k_{l}\right) P\left(k_{s}\right) P\left(k_{l}\right)$

(Licia's talk; templates)
Shandera, 15 May 2011, MCTP

Do we care?

\diamond Can observations constrain $n_{f}^{(m)}, n_{f}^{(s)}$?
\checkmark Careful about using different mass tracers to constrain $f_{N L}$

Do we care?

\checkmark Can observations constrain $n_{f}^{(m)}, n_{f}^{(s)}$? (Becker's talk)
\checkmark Careful about using different mass tracers to constrain $f_{N L}$

Forecasts with naive prediction

- Plots will show:

$$
f_{N L}(k)=\xi_{s}\left(k_{p}\right)\left[\xi_{m}\left(k_{p}\right)\right]^{2}\left(\frac{k}{k_{p}}\right)^{n_{f}^{(s)}+n_{f}^{(m)}}
$$

- Fiducial values:

$$
f_{N L}\left(k_{p}\right) \equiv \xi_{s}\left(k_{p}\right) \xi_{m}^{2}\left(k_{p}\right)=30, n_{f}^{(s),(m)}=0
$$

- Wrong analytic model: Real effect is stronger

Shandera, 15 May 2011, MCTP

Shandera, 15 May 2011, MCTP

Distinguishing the Effects...

Shandera, 15 May 2011, MCTP

Simulation Results: low mass

Shandera, 15 May 2011, MCTP

Compare High Mass

$$
f_{N L}\left(k_{p}\right)=300
$$

Shandera, 15 May 2011, MCTP

But, compare with theory:

Shandera, 15 May 2011, MCTP

But, compare with theory:

Conclusions

Generalized local ansatz

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

Generalized bias:

Short scale stuff

$$
\Delta b_{N G} \propto \frac{f_{N L}^{e f f}(M)}{k^{2-n_{f}^{(m)}}}
$$

Δ Observable (careful with constraints, add CMB)
Setusalti et al)
\triangle Adjust analytic predictions (Schmidt, Desjacques; Scoccimarro Shandera, 15 May 2011, MCTP

